Ionic Liquids

A new class of solvents for chemical reactions in the future

Ennio Vanoli, Lausanne 10.11.2010
Contents

- Introduction
- Generalities of Ionic Liquids
 - History
 - Synthesis and properties
 - Applications of ionic liquids
- Example
 - Scale-up of Heck reaction
- Conclusion
University of Applied Sciences (HES-SO) (Chemistry and Life Sciences)
EIA-FR / Institute of Chemistry

Industrial Chemistry

Applied Chemistry
Strategic Axes of institute of chemistry

- Synthesis of fine chemical products (pharma)
- Optimization of chemical processes
- Scale up and production of chemical products
- Online analysis
What are Ionic Liquids?

- "Ionic liquids, or molten salts, are defined as materials containing only ionic species without any neutral molecules and having a low melting point (usually less than 100°C)"

Interest for the ionic liquids (literature)
Principle of IL’s synthesis

Quaternization reaction

\[NR_3 \xrightarrow{R’X} [NR_3R’]^+X^- \]

1. \(M^+[A]^- \)
2. \(H^+[A]^- \)

Anion Exchange

\[[NR_3R’]^+[A]^- \]
Examples of Ionic Liquids

1-butyl-3-methyl-imidazolium hexafluorophosphate

[bmim] [PF$_6$]

1-butyl-pyridinium tetrafluoroborate

[bpy] [BF$_4$]
Vapor Pressure of Ionic Liquids

- IL’s have a **small** or **not measurable vapor pressure** (very high boiling point)

- Ecological solvent

- **Advantage for the chemical process**
 (separation of synthesis products by distillation)
Miscibility of IL’s with water

By changing the nature of ions, it is possible to change the miscibility with water:

IL water
no soluble

IL water
soluble

Lausanne, 10.11.2010
Multiphase Reaction in IL’s

Water

Ionic liquid

Dichloromethan
Applications of Ionic Liquids

1. Energy

2. Biotechnology

3. Chemistry

4. Industrial Chemistry
Applications of Ionic Liquids

1. Energy
 - Solar Cell
 - Battery Cells
 - Heat Storage

2. Biotechnology
 - Enzyme Catalysis
 - Protein Synthesis
 - Cellulose Chemistry
Applications of Ionic Liquids

3. Chemistry

- Heck reactions
- Suzuki Reactions
- Diels-Alder Reactions
- Friedel-Crafts
- Epoxidations
- Energetic IL

4. Industrial Chemistry

- Extraction
- Extractive Distillation
- Membrane Separation
Principle of Heck Reaction

- Heck reaction related transformation for selective C-C coupling
- Versatility for fine chemical synthesis

\[\text{R} + \text{ArX} + \text{NET}_3 \xrightarrow{\text{Pd}} \text{R} - \text{Ar} + \text{Et}_3\text{NH}^+\text{X}^- \]

- Catalyst is very expensive

- Classical condition:
 solvent: DMF (dimethylformamid) ;
 catalyst lost after one cycle of reaction
 (formation of black palladium)
Development of New Ionic Liquid for the Heck Reaction

Step 1: Synthesis of sulfonic-ester

Step 2: Nucleophilic substitution

Objective: New IL

1-butyl-3-methyl imidazol Tosylate
[bmim] [Tosylate]
Comparison of Heck reaction in different solvents

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Temperature [°C]</th>
<th>Time [h]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF a)</td>
<td>100</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>[bmim][PF6] b)</td>
<td>100</td>
<td>72</td>
<td>65</td>
</tr>
<tr>
<td>[bmim][Tosylate]</td>
<td>100</td>
<td>6</td>
<td>85</td>
</tr>
</tbody>
</table>

Optimization and scale up of Heck Reaction in IL

Number of cycles

Yield [%]

Heck IL Recycling of catalyst
Heck DMF Catalyst decompose
Conclusion

- Ecological solvent
- Activity and recycling of catalyst
- Miscibility
- Safety

- Price of IL
- Purity of IL
- Viscosity
Thank you for your attention